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Braided Coadditive Differential Complexes
on Quantized Braided Groups
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Braided coadditions of differential complexes on some further generalized quantized
braided matrix algebras are constructed. With these coadditions the generalized alge-
braic systems form a kind of braided (additive) differential Hopf algebras. This is a
generalization and unification of some existing results. The coadditions of differential
complexes on the usual braided matrices and quantum matrices, etc., can be obtained
as special cases.

1. INTRODUCTION

Besides the multiplicative coproducts, in the last few years the additive co-
products (coadditions) on the quantum matrices (groups) and braided matrices
(groups), etc., have attracted increasing attention owing to their importance in
mathematics and mathematical physics (Majid, 1994a; Meyer, 1995). After the
introduction and some studies of differential calculuses on the quantum matrices
and braided matrices (Azcarragaal, 1994; Ogievetsket al, 1992; Sudbery,
1992, 1993), the coadditions on these differential complexes were also considered
by some authors (Isaev and Vladimirov, 1995; Vladimirov, 1994). On the other
hand, a kind of more general algebraic systems—the quantized braided matrices
(groups) (QBM(G)s)—were proposed by Hlavaty (1994); these contain the usual
guantum (Faddeegt al, 1989; Manin, 1988) and braided (Kulish and Sasaki,
1993; Kulish and Sklyanin, 1992; Majid, 1991, 1993) matrices (groups), etc., as
special cases (cf. Hlavaty, 1997). Thus the theory of QBM(G) has, among oth-
ers, a remarkable advantage, enabling us to study the two quite different kinds of
noncommutativities (associated, respectively, with quantization and general braid
statistics) in a unified way.
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Recently, we have constructed differential calculuses on the QBM(G)s and
discussed some of their properties (Gao and Gui, in press). In the present paper,
we shall construct braided coadditions of the differential complexes on QBMs
in a slightly further generalized form and show that they form a kind of braided
(additive) differential Hopf algebra. The so-obtained braided Hopf algebra is a
generalization and unification of some existing results, the coadditions of the
differential complexes on braided matrices (Isaev and Vladimirov, 1995) and on
quantum matrices (Vladimirov, 1994), etc., can be obtained as special cases.

In the discussions of this paper, we need the braidings : AQ B - B®
A, ...between the related algebrAs B, C, ..., which obey certain rules (Joyal
and Street, 1986; Majid, 1994h, and references therein), for example,

Waeec = YacW¥as, Yagec = Yac¥e.c (1.1)
and the braid relation
Vg cWac¥as =YaBYacYsc. (1.2)

In general W2 £ id. The structure of the braided tensor product algeb B
involves the braidings in such a way that

(@a®b)@ ®b)=avg Alb®a)b, a,a €A bbeB. (1.3)
If Ais a braided Hopf algebra, then its (braided) antipSdéeys
S(@d) = -¥(Sa® Sd). (1.4)

In Section 2, we first recall some results of QBM(G)s (Gao and Gui, 1997;
Hlavaty, 1994) and related differential complexes obtained recently (Gao and Gui,
in press), then we give some simple generalization of them. In Section 3, some
braided coadditions of differential complexes on the generalized QBMs are con-
structed and the braided Hopf algebra structures of the obtained differential bialge-
bras are demonstrated. Some reduced cases are given in Section 4. It is shown that
the braided (additive) differential Hopf algebras on the braided groups (Isaev and
Vladimirov, 1995) and quantum groups (Vladimirov, 1994), etc., can be obtained
as special cases of the scheme in Section 3.

2. DIFFERENTIAL CALCULUSES ON QBM(G)S
AND THEIR GENERALIZATION

The QBM algebra, denoted BY(R, Z) is defined as follows (Hlavaty, 1994).
Let T = {T/};_; be a matrix ofN? elementsT, andR, Z € My(C) ® Mn(C)
be anR-matrix pair satisfying the set of quantum Yang—Baxter-type equations
Ri2R13R23 = RasRusRy, 212213253 = Zp3Z13712,
Ri2Z13223 = Z33Z13R2, Z12213Ro3 = Rp3Z13Z12, (2.1)
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then A(R, Z) is generated byT!, 1} with the following algebra relation
Ri12Z13T1Z15Ty = Z51 ToZon TaRaa. (2.2)

Here theR andZ are both assumed to be invertible.
A matrix solutionR of the quantum Yang—Baxter equation (QYBE) is termed
Hecke type if it satisfies

(PR-q)(PR+q ™) =0, oo  PRPR=1+APR (2.3)

for suitableq andx = g — q~. WhereP is the usual permutation matrix.

Proposition 2.1 (Gao and Gui, 1997) Defining RV = (ZP)"R(Z1P)", if
(R, Z) is an R-matrix pair satisfying (2.1), thefiR(™, Z) too satisfies (2.1) for
each integer n= 0, %1, £2, .... Moreover, if R is Hecke type, then so i$)R

Recently, we had constructed the differential calculused@®, Z), the al-
gebra relations of which are (Gao and Gui, in press)
Ri2Z153 T1Z15To = Z5i ToZoTa Ry,
Ry Z; T1Z1,0T, = Z57d T2 Z21 Ta Ry,

Ry Z13dTaZ1pd T = —Z51dToZand Th Ry, (2.4)
whered is the external differentiation obeyind? = 0 and the usual (graded)
Leibnitz rule. The differential algebra given by (2.4) will be denotedhyr, z).

In the following part of this section, we give some simple generalization of
QAR 2)-

Definition2.2. Consideranorderedtriple of numericalmatri€gsR, Z € My ®
My, if Q, Rare both invertible an®, R, Zsatisfy the following mixed QYBEs

Q12Q13Q23 = Q23Q13Q12, Ri2R13R23 = RozRizRy2,
Z12213Q23 = Q23Z13Z12, R12Z13753 = Z53Z13R12, (2.5)
then we call this ordered triple &-matrix tripleand denote it byQ, R, 2.

Proposition 2.3. Let(Q, R Z) be an R-matrix triple, let also (R both be Hecke
type and Z have the second inveige= ((Z%2)~1)2 (t, denotes transposition in
the second factgr Then a differential algebr&aq,r z) can be constructed as
follows: itis generated by = {T/}\,_;,dT = {dTj}},_;, 1and has the algebra
relations

Q21T1Z12T2 = T2Z1T1 Ry, (2.6a)
QT1Z1d Ty = dTZxTi Ry, (2.6b)
QydTiZ1dTy = —dT2Zx1d TRy (2.6¢)
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Proof: The subalgebra (2.6a) has been given by Friedel and Maillet (1991) in a
somewhat more general form. However, here@go, r z) contains also the dif-
ferential formg{d Tji } as a part of generators, so we have to check that the relations
(2.6a)—(2.6c) as awhole can consistently define an associative algebra. To this end,
we consider, for example, the expression containing triple of the generators as

T1Z120T2Z13Z23d Ts. (2.7)

We involveZ in (2.7) so that the algebra relations (2.6) can be conveniently used,
and this does not lose the generality because of the existenteTodnsposing
(2.7) in two ways, from (2.6) we obtain
T12120T2Z13Z53d T3 = Q120 T2Z21T1 R12Z13Z23d T3
= Qu20T2Z21Z23T1Z13d T3 Ry2
= Q120T2Z21Z23Q130 T3Z31 T1 RizRi2
Q12Q13dT2Z23d 13751 Z31 T1 RizRy2
= —Q12Q13Q230 T3Z32d T2 Rp3Z21 231 T1 RizRy2
= —Q12Q13Q230 T3Z320 T2Z31Z51 T1 RosRuz Rz,
T1Z120T2Z13Z530 T3 = —T1Z12Z13Q230 T3Z3,d To Ro3
= — Q23112130 T3Z12Z32d T2 Rz
= —Q23Q130 T3Z31T1 R13Z12Z3,d T2 Rz
= —Q23Q130 T3Z31Z32T1 Z12d T R13R23
= —Q23Q13d T3Z51Z5,Q120 T2 Z21 T1 Ri2Ri3Re3
= —Q23Q13Q12d T3Z320 T2Z31Z51 T1 Ri2 Rz Res.

The two results are equal from the QYBEs@#&ndR. In the above calculations

we have used (2.5), (2.6), and their index-relabelled forms many times to the un-
derlined parts in each expression to obtain the next expression. For other triple
products of generators, the calculations are similar. So these do not impose any ad-
ditional relation orT, dT and thus the differential algebfa g, r z) iS consistently
defined. O

TakingQi2 = Z12 R2122‘11, then from Proposition 2.1 the g, r z) is reduced
to theQ2ar,z) given by (2.4). SRR, z) is a special case @2 aq,r,2)-
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3. BRAIDED ADDITIVE COPRODUCT (COADDITION) ON  €24(q.Rr,2)

In this section we show that the differential algeao, r, z) given by (2.6)
admits some braided coaddition and with this coadditifig,r,z) becomes a
braided Hopf algebra.

Theorem 3.1. Let (Q, R, Z) be an R-matrix triple, let also QR be Hecke
type and Z have the second inveidethen the differential algebr&ag,r z)
given by (2.6) forms a braided Hopf algebra if it is provided with the additive
coproduct
AM=TRL1+1T=T+T,
AdT)=dT®1+1®dT =dT +dT, (3.1)
the counit, antipode
e(1l) =1, e(T)=¢(dT) =0,
(1) =1, ST)=-T, SdT) = —dT, 3.2)
and any one of the following four braiding relations
T1Z15T) = Qu2T2Zx TiRu,
T1Z120To = Q120 T2Z21 Ti Ri2 + AP12T2Z21d Ty Ry,
dT1Z12Tz = Qi T2Z2d iRy,
dflzlngz = —QEf'dTQZZJ_dT—l Rqi; (33&)

T1Z15T = Q31 T2 Zai ThR5,
11210 T, = Q1021 TiRY,
dT1Z12T2 = Qui ToZod ThRF — APLd T2 2 Th RS,
dT1Z1d T, = — Q120 T2 Zo1d Ti R, (3.3b)

T1215T> = Q12T2Za1 T1Ru2,
112120 T, = Q10T Z1 Ty Riz + AQ12T2 Z21d Ty Pro,
dT1Z15T) = QT2 Znd iRy,
dT1Z1,dT; = — Q120 T2 Zd Th Ry (3.3¢)

T1Z15To = Qut ToZot Ti R,
112120 T, = Q;1dT2Zo1 TiRu,
dT1Z15Ty = Q51 ToZnd TR} — 2Q51d T2Zx1 TiPuy,
dT1Z12dT, = —Qyd T2 Z1d Ti Ry (3.3d)
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Proof: The discussion of Vladimirov (1994) is one of our motivations. In this
paper, we shall write braidings in two ways: uBeas in Section 1 or use symbols
with tilde (cf. (3.1)) and omit writingl and the tensor produgt as in (3.3). Here
we introduce the following notation:

-
- , (T dT), 3.4
o=(gp)r n=C am @9
Qi O 0 0 Qo 0 © 0
0 Qy —AP O - | 0 Q2 APz O
Vel o 0 Q. o |° 2Tl o o Q! o |
0 O 0 —Qun 0 0 0 —-Qyf
(3.5a)
R 0O 0 0 R, 0 0O O
0 Ry 0 0 ~ | 0 R 0O O
Me=1 0 P re 0o [ W= 0 aPpRE 0
0 0 0 —Rp 0 0 0 -R}

(3.5b)

Then considering the Hecke property @f R, the algebra relations (2.6) can be
rewritten in several forms as follows

0121203 = Vi3 93 Z21¢1 Riz (3.6a)
= Vi3 ¢} Zo19) Ry, (3.6h)

mZiny = Quony Zoiny Wiy (3.6¢)
= Quin Zoany W, (3.6d)

Where the indices |, Il, etc., enumerate the “super” matrix and vector spaces whose
elements themselves are matrices (such as the gh&eetc.), we use the Roman
numerals and write them as superscripts to distinguish them from the usual Arabic
numeral subscripts 1, 2, etc.

By the aid of (3.6a)—(3.6d), we now show that the differential alg&x@, r, z)
admits the additive coproduct (3.1) with any one of the following braidings

P Z120% = Vo' 0 Z15) Rua, (3.72)
121208 = VIS 0h 75151 Riy, (3.7b)
71 Z1om = Quan Zoriy Wi, (3.7¢)

i Zizny = Qizny Zaaiiy Wiy (3.7d)
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We remark that the component forms of (3.7a)—(3.7d) are just the braidings
(3.3a)—(3.3d) respectively, and the braidings (3.7a) and (3.7b), (3.7c) and (3.7d)
(equivalently (3.3a) and (3.3b), (3.3c) and (3.3d)) are inverses of each other, re-
spectively.

First, (3.7a)—(3.7d) obey the axioms of braiding. For example, considering
(3.7a) we have

(Vv @id)(id ® ¥)(¥ @id)(¢] ® Z12¢5 ® Z13Z2303')
= (¥ ®id)(id ® W)(V{) ¢y ® Zo1pi Ri» ® Z13Z230}' )
= (v ®id)(id ® ¥)(V. 'é' 08 ® Z21Z53¢1 ® Z13¢3' Ru2)
= (U ®id)( Vilel ® Zzlzst'é" 98 ® Z31p1RizRi2)
= (V ®id)(Vi3 Vi3V 1|3|“€0|2I ® Zoapy ® 221231</)|1R13R12)
= le_él V]I_CI’,“ Vz”g,”"ﬂgl ® Zapy ® RzZ21Z31901 RasRi2
= VI Vi" VI ol @ Zaogl) ® Z31Z210) ResRusRuz,

on the other hand

(id @ ¥)(¥ @id)(id ® V)(¢] ® Z12¢p ® Z13Z23¢5' )
=(id @ ¥)(V ®id)(p; ® Z12Z13Va" ol ® Zzop) Ro3)
= (id @ W)(¥ @ id)(V. Vo' o} @ Zi3gh! ® Z12Z300) Ro3)
=(d® ‘I’)(Vzu "I 0 ® Za19) ® RisZ12Zaaph Ra3)
=(d® ‘IJ)(Vzu u Vlléu @8 ® Z31Z3¢) ® Z1o¢5 RisRe3)
= V3" VI o' ® Z51Z52V)) 0 ® Z210) RizRusRes
= V" VIV o ® Zaoph ® Z31Z21¢ RizRisRes.

These two results are equal owing to (2.5). In the above calculations, we have
used (2.5), (3.7a), (3.5a), and the equatiBp 1323 = Z23Z13P12, Z12Z13P23 =
P,3Z13Z12, many times. For the other braidings (3.7b)—(3.7d) the calculations are
similar.

Next, the extension of the braidings to products is considered. For instance,
from (3.6a) and (3.7a) we deduce, on the one hand,

$1212Z13(0h Zosgh' ) = V12 0 215} R12Z13Z 2308

= Vi3 o) 22172301 Z13¢3 Ruz
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= VY 0} Z21Z53V1Y' 0 Z213} RizRuz
= VvV (03 Z23ph' ) Z21Z31$; RisRuo,

and on the other hand,

PiZ12Z1s(VH " Zaoe} R

= V5" @1 21308 Z12Z3205 Ros

= V3" VI o8 Z313} RisZ12Z30¢h Ros

= V! Vlgl,” 08 7317320} Z1295 Ri3Ro3

= VATV ol 7451 735V, 08 Z21) RiaRusRos
= V3! VI ! Vl'é' 08 Zaoph Z31Z21Roa®) RusR12

=V Viy! (V25 " 08" Zaoph Ros) Zo1Z31$1 RisRuz.

The two results are equal by (3.6a). In the above calculations, we have used (2.5)
and QYBEs abou¥ andV obtained from (2.5). The consistency of the extension
to the high-order products and for the other braidings (3.7b)—(3.7d) can be verified
in entirely similar ways. Hence the braidings (3.7a)—(3.7d) are all well defined and
functorial with respect to the product.

Moreover, we extena in (3.1) to products in such a way that it is a homo-
morphism to the baided tensor product like (1.3). This is consistent because, for
example, for (3.6a) we have

AP Z12gh) = (9} + 1) Zaa(h + @)
= 012120y + 0121205 + §1 2129y + 121205
= 0121205 + ¢1Z120y VI; @y 21y Raz + 121203 ,

AV 03 Z2191 Rio) = V15 (03 + 35) Za1(9) + &) Rz

= V{5 o8 Zo10  Riz + VY 0b Zo13i Rea

+ VL' 38 Zo10} Ry + VA5 38 2215 Raz

= V' 0} Z210) Riz + V15 0h Z13) Raz

+V”|V“1|<,0|1212 Ro1Ri2 4+ Vib' 35 Zo13) Raz

= V{5 o8 Z210 Riz + VY b Zo13) Rea

+ @1 Z1235 (L + AP1oR12) + V538 2161 Raa,
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the two results are equal owing to (3.6a) and the relaégh= V/\! + Py ,P'"
obtained from (3.5a). In the above calculations we have also used
VIV = E (unit matrix) and the Hecke property &, R. SoA is well defined.
Itis trivial to see that the braidings (3.7) (or equivalently (3.3)) are functorial with
respect to the coprodug.

Finally, for a braided Hopf algebra, the antipo8éy definition is braided
antimultiplicative in the sense of (1.4). Then we can calculate, for example, for
(3.6a) and (3.7a), that

S(p1Z1205) = -V (S(¢}) ® Z12S(¢})) = V13 08 Zo104 Rio = ¢} Z12¢3 Ro1 R,
where the relation (3.6b) has been used; On the other hand,

S(Viz'¢2 Zarg1 Riz) = -W(V1z S(g2) ® ZaS(1) Ruz)

= V! IV”1I 01Z1203 Ro1R12 = ¢} Z10¢) Ro1Rua.

So we haveS(p} Z12¢)) = (V1Y ¢b Z19! Riz). On the high-order products and
the other braidings, the calculations are similar. TBiswell defined.
OtheraxiomssuchaS® id)A = -(id ® S)A =ne, etc., are easily verified.
Therefore, equipped with coproduct (3.1), counit, antipode (3.2), and one
of the braidings in (3.3), the differential algebfano,r z) becomes a braided
Hopf algebra, this braided (additive) differential Hopf algebra will be denoted by

Qa0rz U

4. SPECIAL CASES

The braided (additive) differential Hopf algetf,  r z) given in Section 3
contains plenty of special cases, some of which are well known. These special
cases can be obtained frof, g 7y by suitable choice of th&matrix triple
(Q, R, Z). (In this sectiorZ is also supposed to be invertible).

Example 4.1. TakingQ1, = leRglzZl , then from Proposition 2.1, thematrix
triple (Q, R, 2) is reduced to afr-matrix pair R, Z) satisfying (2.1), and the
algebra relations (2.6) are reduced to (2.4). Correspondinglys2thg r z) is
reduced toQA(R 7). @ braided (additive) differential Hopf algebra based on the
Qa(r,z) given by (2.4). Epr|C|tIy,QA(R z) has the algebra relations (2.4), the
additive coproduct (3.1), the counit, antipode (3.2), and one of the following four
braidings obtained from (3.3) as
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T1Z12Ty = Z12RnZ51 ToZo1 Ta Ry,
T12120 T = Z12R01Z5 d o Zo1 T1 Riz + AP12T2Z21d Ti Ry,
dT1Z15To = Z1oRy5 25! ToZnd Th Ry,
dT1210 Ty = —Z12R; 251 d T2 Z1d T Ry (4.1a)

T1Z15Ty = Z1oR; 251 ToZa Th RS,
T1Z12d Ty = Z19Rn Z571d o Zn iRy,
dT1Z15Ty = Z1oR3 251 T2 Z01d Ti R — APLd T.Zor iRy,
dT1Z120 Ty = —Z12RnZ57d o Z0d Th RS, (4.1b)

T1Z12Ty = Z12RnZ,51 ToZo1 TaRuz,
112120 Ty = Z12R01Z, d T Zo1 Ti Rip 4+ A Z12Ro1 257 To Zo1d Ty P,
dT1Z12T2 = Z12RanZ, T Zand TaRy
dT1Z120 Ty = —~Z15R01 Z5 1 d To Znd T Ry (4.1c)

T1Z15Ty = Z1oR; 253 o Zan TR,
T1Z12d Ty = Z1oR} 251 d T2 Zo Ta Rag,
dT1Z15Ts = Z1oR3 251 T2 Zo1d Ti Ry — A Z1oR3 251 d T2 251 Ty Paa,
dT1Z12d Ty = —Z12R 5 2,1 d T2 Zd T Ry (4.1d)

Example 4.2. Taking Q12 = Ry = Z15, then theR-matrix triple (Q, R, Z) is
reduced to a single matrix solutidd of the QYBE, and (2.6) is reduced to the
algebra relations of the differential compl@gr) on the braided matrix algebra
B(R) (Azcarrageet al., 1994, Kulish and Sasaki, 1993; Kulish and Sklyanin, 1992;
Majid, 1991, 1993; Ogievetskgt al, 1992):

R21T1 Ri2To = ToRo1 T Ryo,
Rz TiRi20 T, = dT2Rx1 T1 Ry,
R7dTiRi2d T, = —~dT,R:1d Ty Ry2. (4.2)

Correspondingly, th@ g r 7 isreduced t@2g g, : a braided (additive) differential
Hopf algebra orf2g(r). Concretely, the2g ) has the algebra relations (4.2), the
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additive coproduct (3.1), the counit, antipode (3.2) and one of the following four
braidings obtained from (3.3) as
TiRi2T2 = RixTRe1 TRz,
TiR120 T, = Ri2d TR TiRi2 + AP ToRnd Ti Ry,
dTiRi2T2 = Ry ToRad TiRy2,
dTiRd T = — Ry dToRx:d Ty Ri; (4.3a)

TiR2T2 = Ry 2R TR,
TiR12d Ty = Ri2d TR T RS,
dTiR12T2 = Ry ToRd T RS — APLd ToRa Ta Ry,
dTiR1d Ty = —Ri2d T R»d TR, (4.3b)

TiRi2T2 = RizTRe1 TRz,
TiR120 Tz = Ri2d TR TiRi2 + AR12 T2 Ro1d T1 P,
dTiRi2T2 = Rz ToRd Th Ry,
dTiRd Ty = —Ripd ToRyd Ty Ry (4.3¢)

TiR2T2 = Ry 2R Ti R,
TiR12d Ty = Ry d TRy Ty Rz,
dTiR12T2 = Ryp ToRd TRy — AR A TRy Th Py,
dTiR1d Ty = —RyId TRy d Ty Ryo. (4.3d)

The aboveg g, is, in fact, a “right-hand” version of the related result given
by Isaev and Vladimirov (1995) and Vladimirov (1994).

Example 4.3. Taking Q12 = Ry1, Z = 1, then (2.5) is reduced essentially to the
QYBE aboutR, and (2.6) is reduced to the algebra relations of the differential
complex2 ar) 0N the quantum matrix algebrd R) (Faddeeetal, 1989; Sudbery,
1992, 1993):
Ri2Ti Tz = T Th Ry,
Ry TidT, = dT,T1 Rz,
Ry1dTidT, = —dT,d Ty Ry2. (4.4)

Correspondingly, th o r ) isreduced t@2 , r,: a braided (additive) differential
Hopf algebra ort2ar). Explicitly, the 2, ) has the algebra relations (4.4), the
additive coproduct (3.1), the counit, antipode (3.2), and one of the following four
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braidings obtained from (3.3) as

TiT2 = RuT: TRz,
T1dT, = Ryud T TiRiz + AP1aTod T Ry,
dTiT, = R Td Ty Ry,
dTidT; = —RFdTod TiRyy; (4.5a)

T.To = R TR,
TdT, = Rud L TR,
dTiTo = RATd TR} — APLd T, TiRE,
dTidT; = —Rd Ld Th R, (4.5b)

TiT2 = RuT. TRz,
T1dT, = Rud T TiRi2 + AR Tod T1 Prz,
dTiT, = RuTod TRy,
dTidT; = —Rud d iRy} (4.5c)

T.T, = Ry iRy,
T.dT, = RFd L TaRi2,
dTiT, = R Td TRy — ARFd T, T Pia,
dTidT, = —RFdTd Ty Ry (4.5d)

TheQ 5g) here isin reality a “right-hand” version of the corresponding result
given by Vladimirov (1994).

There are also other special casef@fq, r 7 such as braided (additive) dif-
ferential Hopfalgebras on the quantum supermatrix algebras (Liao and Song, 1991;
Manin, 1989), on the quantum anyonic matrix algebras (Majid and Rodriguez-
Plaza, 1994), and on the-braidedG L, (Couture and Leivo, 1994), etc.; these
can all be obtained frorf 5 o r z) Py choosing suitabl&-matrix triple Q, R, 2,
but here we have not discussed them in any detail.
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