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Braided coadditions of differential complexes on some further generalized quantized
braided matrix algebras are constructed. With these coadditions the generalized alge-
braic systems form a kind of braided (additive) differential Hopf algebras. This is a
generalization and unification of some existing results. The coadditions of differential
complexes on the usual braided matrices and quantum matrices, etc., can be obtained
as special cases.

1. INTRODUCTION

Besides the multiplicative coproducts, in the last few years the additive co-
products (coadditions) on the quantum matrices (groups) and braided matrices
(groups), etc., have attracted increasing attention owing to their importance in
mathematics and mathematical physics (Majid, 1994a; Meyer, 1995). After the
introduction and some studies of differential calculuses on the quantum matrices
and braided matrices (Azcarragaet al., 1994; Ogievetskyet al., 1992; Sudbery,
1992, 1993), the coadditions on these differential complexes were also considered
by some authors (Isaev and Vladimirov, 1995; Vladimirov, 1994). On the other
hand, a kind of more general algebraic systems—the quantized braided matrices
(groups) (QBM(G)s)—were proposed by Hlavaty (1994); these contain the usual
quantum (Faddeevet al., 1989; Manin, 1988) and braided (Kulish and Sasaki,
1993; Kulish and Sklyanin, 1992; Majid, 1991, 1993) matrices (groups), etc., as
special cases (cf. Hlavaty, 1997). Thus the theory of QBM(G) has, among oth-
ers, a remarkable advantage, enabling us to study the two quite different kinds of
noncommutativities (associated, respectively, with quantization and general braid
statistics) in a unified way.
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Recently, we have constructed differential calculuses on the QBM(G)s and
discussed some of their properties (Gao and Gui, in press). In the present paper,
we shall construct braided coadditions of the differential complexes on QBMs
in a slightly further generalized form and show that they form a kind of braided
(additive) differential Hopf algebra. The so-obtained braided Hopf algebra is a
generalization and unification of some existing results, the coadditions of the
differential complexes on braided matrices (Isaev and Vladimirov, 1995) and on
quantum matrices (Vladimirov, 1994), etc., can be obtained as special cases.

In the discussions of this paper, we need the braidings9A,B : A⊗ B→ B⊗
A, . . .between the related algebrasA, B, C, . . . , which obey certain rules (Joyal
and Street, 1986; Majid, 1994b, and references therein), for example,

9A,B⊗C = 9A,C9A,B, 9A,⊗B,C = 9A,C9B,C (1.1)

and the braid relation

9B,C9A,C9A,B = 9A,B9A,C9B,C. (1.2)

In general,92 6= id. The structure of the braided tensor product algebraA⊗ B
involves the braidings in such a way that

(a⊗ b)(a′ ⊗ b′) = a9B, A(b⊗ a′)b′, a, a′ ∈ A, b, b′ ∈ B. (1.3)

If A is a braided Hopf algebra, then its (braided) antipodeSobeys

S(aa′) = ·9(Sa⊗ Sa′). (1.4)

In Section 2, we first recall some results of QBM(G)s (Gao and Gui, 1997;
Hlavaty, 1994) and related differential complexes obtained recently (Gao and Gui,
in press), then we give some simple generalization of them. In Section 3, some
braided coadditions of differential complexes on the generalized QBMs are con-
structed and the braided Hopf algebra structures of the obtained differential bialge-
bras are demonstrated. Some reduced cases are given in Section 4. It is shown that
the braided (additive) differential Hopf algebras on the braided groups (Isaev and
Vladimirov, 1995) and quantum groups (Vladimirov, 1994), etc., can be obtained
as special cases of the scheme in Section 3.

2. DIFFERENTIAL CALCULUSES ON QBM(G)S
AND THEIR GENERALIZATION

The QBM algebra, denoted byA(R, Z), is defined as follows (Hlavaty, 1994).
Let T = {Ti

j }Ni , j=1 be a matrix ofN2 elementsTi
j and R, Z ∈ MN(C)⊗ MN(C)

be anR-matrix pair satisfying the set of quantum Yang–Baxter-type equations

R12R13R23 = R23R13R12, Z12Z13Z23 = Z23Z13Z12,

R12Z13Z23 = Z23Z13R12, Z12Z13R23 = R23Z13Z12, (2.1)
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thenA(R, Z) is generated by{Ti
j , 1} with the following algebra relation

R12Z−1
12 T1Z12T2 = Z−1

21 T2Z21T1R12. (2.2)

Here theRandZ are both assumed to be invertible.
A matrix solutionRof the quantum Yang–Baxter equation (QYBE) is termed

Hecke type if it satisfies

(P R− q)(P R+ q−1) = 0, or P RP R= 1+ λP R (2.3)

for suitableq andλ = q − q−1. WhereP is the usual permutation matrix.

Proposition 2.1 (Gao and Gui, 1997). Defining R(n) ≡ (Z P)n R(Z−1P)n, if
(R, Z) is an R-matrix pair satisfying (2.1), then(R(n), Z) too satisfies (2.1) for
each integer n= 0,±1,±2, . . . . Moreover, if R is Hecke type, then so is R(n).

Recently, we had constructed the differential calculuses onA(R, Z), the al-
gebra relations of which are (Gao and Gui, in press)

R12Z−1
12 T1Z12T2 = Z−1

21 T2Z21T1R12,

R−1
21 Z−1

12 T1Z12dT2 = Z−1
21 dT2Z21T1R12,

R−1
21 Z−1

12 dT1Z12dT2 = −Z−1
21 dT2Z21dT1R12, (2.4)

whered is the external differentiation obeyingd2 = 0 and the usual (graded)
Leibnitz rule. The differential algebra given by (2.4) will be denoted byÄA(R,Z).

In the following part of this section, we give some simple generalization of
ÄA(R,Z).

Definition 2.2. Consider an ordered triple of numerical matricesQ, R, Z ∈ MN⊗
MN , if Q, Rare both invertible andQ, R, Zsatisfy the following mixed QYBEs

Q12Q13Q23 = Q23Q13Q12, R12R13R23 = R23R13R12,

Z12Z13Q23 = Q23Z13Z12, R12Z13Z23 = Z23Z13R12, (2.5)

then we call this ordered triple anR-matrix tripleand denote it by (Q, R, Z).

Proposition 2.3. Let (Q, R, Z) be an R-matrix triple, let also Q, R both be Hecke
type and Z have the second inverseZ̃ ≡ ((Zt2)−1)t2 (t2 denotes transposition in
the second factor). Then a differential algebraÄA(Q,R,Z) can be constructed as
follows: it is generated by T= {Ti

j }Ni , j=1, dT = {dTi
j }Ni , j=1, 1and has the algebra

relations

Q21T1Z12T2 = T2Z21T1R12, (2.6a)

Q−1
12 T1Z12dT2 = dT2Z21T1R12, (2.6b)

Q−1
12 dT1Z12dT2 = −dT2Z21dT1R12. (2.6c)
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Proof: The subalgebra (2.6a) has been given by Friedel and Maillet (1991) in a
somewhat more general form. However, here theÄA(Q,R,Z) contains also the dif-
ferential forms{dTi

j } as a part of generators, so we have to check that the relations
(2.6a)–(2.6c) as a whole can consistently define an associative algebra. To this end,
we consider, for example, the expression containing triple of the generators as

T1Z12dT2Z13Z23dT3. (2.7)

We involveZ in (2.7) so that the algebra relations (2.6) can be conveniently used,
and this does not lose the generality because of the existence ofZ̃. Transposing
(2.7) in two ways, from (2.6) we obtain

T1Z12dT2Z13Z23dT3 = Q12dT2Z21T1R12Z13Z23dT3

= Q12dT2Z21Z23T1Z13dT3R12

= Q12dT2Z21Z23Q13dT3Z31T1R13R12

= Q12Q13dT2Z23dT3Z21Z31T1R13R12

= −Q12Q13Q23dT3Z32dT2R23Z21Z31T1R13R12

= −Q12Q13Q23dT3Z32dT2Z31Z21T1R23R13R12,

T1Z12dT2Z13Z23dT3 = −T1Z12Z13Q23dT3Z32dT2R23

= −Q23T1Z13dT3Z12Z32dT2R23

= −Q23Q13dT3Z31T1R13Z12Z32dT2R23

= −Q23Q13dT3Z31Z32T1Z12dT2R13R23

= −Q23Q13dT3Z31Z32Q12dT2Z21T1R12R13R23

= −Q23Q13Q12dT3Z32dT2Z31Z21T1R12R13R23.

The two results are equal from the QYBEs ofQ andR. In the above calculations
we have used (2.5), (2.6), and their index-relabelled forms many times to the un-
derlined parts in each expression to obtain the next expression. For other triple
products of generators, the calculations are similar. So these do not impose any ad-
ditional relation onT, dTand thus the differential algebraÄA(Q,R,Z) is consistently
defined. ¤

TakingQ12 = Z12R21Z−1
21 , then from Proposition 2.1 theÄA(Q,R,Z) is reduced

to theÄA(R,Z) given by (2.4). SoÄA(R,Z) is a special case ofÄA(Q,R,Z).
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3. BRAIDED ADDITIVE COPRODUCT (COADDITION) ON ΩA(Q,R,Z)

In this section we show that the differential algebraÄA(Q,R,Z) given by (2.6)
admits some braided coaddition and with this coadditionÄA(Q,R,Z) becomes a
braided Hopf algebra.

Theorem 3.1. Let (Q, R, Z) be an R-matrix triple, let also Q, R be Hecke
type and Z have the second inverseZ̃; then the differential algebraÄA(Q,R,Z)

given by (2.6) forms a braided Hopf algebra if it is provided with the additive
coproduct

1(T) = T ⊗ 1+ 1⊗ T ≡ T + T̃ ,

1(dT) = dT ⊗ 1+ 1⊗ dT ≡ dT + dT̃ , (3.1)

the counit, antipode

ε(1) = 1, ε(T) = ε(dT) = 0,

S(1) = 1, S(T) = −T, S(dT) = −dT, (3.2)

and any one of the following four braiding relations

T̃1Z12T2 = Q12T2Z21T̃1R12,

T̃1Z12dT2 = Q12dT2Z21T̃1R12+ λP12T2Z21dT̃1R12,

dT̃1Z12T2 = Q−1
21 T2Z21dT̃1R12,

dT̃1Z12dT2 = −Q−1
21 dT2Z21dT̃1R12; (3.3a)

T̃1Z12T2 = Q−1
21 T2Z21T̃1R−1

12 ,

T̃1Z12dT2 = Q12dT2Z21T̃1R−1
12 ,

dT̃1Z12T2 = Q−1
21 T2Z21dT̃1R−1

12 − λP12dT2Z21T̃1R−1
12 ,

dT̃1Z12dT2 = −Q12dT2Z21dT̃1R−1
12 ; (3.3b)

T̃1Z12T2 = Q12T2Z21T̃1R12,

T̃1Z12dT2 = Q12dT2Z21T̃1R12+ λQ12T2Z21dT̃1P12,

dT̃1Z12T2 = Q12T2Z21dT̃1R−1
21 ,

dT̃1Z12dT2 = −Q12dT2Z21dT̃1R−1
21 ; (3.3c)

T̃1Z12T2 = Q−1
21 T2Z21T̃1R−1

21 ,

T̃1Z12dT2 = Q−1
21 dT2Z21T̃1R12,

dT̃1Z12T2 = Q−1
21 T2Z21dT̃1R−1

12 − λQ−1
21 dT2Z21T̃1P12,

dT̃1Z12dT2 = −Q−1
21 dT2Z21dT̃1R12. (3.3d)
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Proof: The discussion of Vladimirov (1994) is one of our motivations. In this
paper, we shall write braidings in two ways: use9 as in Section 1 or use symbols
with tilde (cf. (3.1)) and omit writing9 and the tensor product⊗ as in (3.3). Here
we introduce the following notation:

ϕ =
(

T

dT

)
, η = (T dT), (3.4)

V12 =


Q−1

21 0 0 0
0 Q−1

21 −λP12 0
0 0 Q12 0
0 0 0 −Q12

 , V̄12 =


Q12 0 0 0
0 Q12 λP12 0
0 0 Q−1

21 0
0 0 0 −Q−1

21

 ,

(3.5a)

W12 =


R−1

21 0 0 0
0 R−1

21 0 0
0 −λP12 R12 0
0 0 0 −R12

 , W̄12 =


R12 0 0 0
0 R12 0 0
0 λP12 R−1

21 0
0 0 0 −R−1

21

 .
(3.5b)

Then considering the Hecke property ofQ, R, the algebra relations (2.6) can be
rewritten in several forms as follows

ϕI
1Z12ϕ

II
2 = V II I

12 ϕ
II
2 Z21ϕ

I
1R12 (3.6a)

= V̄ I II
12 ϕ

II
2 Z21ϕ

I
1R−1

21 , (3.6b)

ηI
1Z12η

II
2 = Q12η

II
2 Z21η

I
1WII

12
I (3.6c)

= Q−1
21 η

II
2 Z21η

I
1W̄I

12
II . (3.6d)

Where the indices I, II, etc., enumerate the “super” matrix and vector spaces whose
elements themselves are matrices (such as the aboveϕ, V , etc.), we use the Roman
numerals and write them as superscripts to distinguish them from the usual Arabic
numeral subscripts 1, 2, etc.

By the aid of (3.6a)–(3.6d), we now show that the differential algebraÄA(Q,R,Z)

admits the additive coproduct (3.1) with any one of the following braidings

ϕ̃I
1Z12ϕ

II
2 = V̄ I

12
IIϕII

2 Z21ϕ̃
I
1R12, (3.7a)

ϕ̃I
1Z12ϕ

II
2 = V II

12
IϕII

2 Z21ϕ̃
I
1R−1

12 , (3.7b)

η̃I
1Z12η

II
2 = Q12η

II
2 Z21η̃

I
1W̄I II

12 , (3.7c)

η̃I
1Z12η

II
2 = Q−1

12 η
II
2 Z21η̃

I
1WII I

12 (3.7d)
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We remark that the component forms of (3.7a)–(3.7d) are just the braidings
(3.3a)–(3.3d) respectively, and the braidings (3.7a) and (3.7b), (3.7c) and (3.7d)
(equivalently (3.3a) and (3.3b), (3.3c) and (3.3d)) are inverses of each other, re-
spectively.

First, (3.7a)–(3.7d) obey the axioms of braiding. For example, considering
(3.7a) we have

(9 ⊗ id)(id ⊗9)(9 ⊗ id)
(
ϕI

1⊗ Z12ϕ
II
2 ⊗ Z13Z23ϕ

III
3

)
= (9 ⊗ id)(id ⊗9)

(
V̄ I II

12 ϕ
II
2 ⊗ Z21ϕ

I
1R12⊗ Z13Z23ϕ

III
3

)
= (9 ⊗ id)(id ⊗9)

(
V̄ I II

12 ϕ
II
2 ⊗ Z21Z23ϕ

I
1⊗ Z13ϕ

III
3 R12

)
= (9 ⊗ id)

(
V̄ I II

12 ϕ
II
2 ⊗ Z21Z23V̄

I III
13 ϕ

III
3 ⊗ Z31ϕ

I
1R13R12

)
= (9 ⊗ id)

(
V̄ I II

12 V̄ I
13

IIIϕII
2 ⊗ Z23ϕ

III
3 ⊗ Z21Z31ϕ

I
1R13R12

)
= V̄ I II

12 V̄ I III
13 V̄ II

23
IIIϕIII

3 ⊗ Z32ϕ
II
2 ⊗ R23Z21Z31ϕ

I
1R13R12

= V̄ I II
12 V̄ I

13
III V̄ II

23
IIIϕIII

3 ⊗ Z32ϕ
II
2 ⊗ Z31Z21ϕ

I
1R23R13R12,

on the other hand

(id ⊗9)(9 ⊗ id)(id ⊗9)
(
ϕI

1⊗ Z12ϕ
II
2 ⊗ Z13Z23ϕ

III
3

)
= (id ⊗9)(9 ⊗ id)

(
ϕI

1⊗ Z12Z13V̄
II III
23 ϕIII

3 ⊗ Z32ϕ
II
2 R23

)
= (id ⊗9)(9 ⊗ id)

(
V̄ II

23
IIIϕI

1⊗ Z13ϕ
III
3 ⊗ Z12Z32ϕ

II
2 R23

)
= (id ⊗9)

(
V̄ II

23
III V̄ I III

13 ϕ
III
3 ⊗ Z31ϕ

I
1⊗ R13Z12Z32ϕ

II
2 R23

)
= (id ⊗9)

(
V̄ II

23
III V̄ I III

13 ϕ
III
3 ⊗ Z31Z32ϕ

I
1⊗ Z12ϕ

II
2 R13R23

)
= V̄ II

23
III V̄ I III

13 ϕ
III
3 ⊗ Z31Z32V̄

I II
12 ϕ

II
2 ⊗ Z21ϕ

I
1R12R13R23

= V̄ II
23

III V̄ I III
13 V̄ I II

12 ϕ
III
3 ⊗ Z32ϕ

II
2 ⊗ Z31Z21ϕ

I
1R12R13R23.

These two results are equal owing to (2.5). In the above calculations, we have
used (2.5), (3.7a), (3.5a), and the equationsP12Z13Z23 = Z23Z13P12, Z12Z13P23 =
P23Z13Z12 many times. For the other braidings (3.7b)–(3.7d) the calculations are
similar.

Next, the extension of the braidings to products is considered. For instance,
from (3.6a) and (3.7a) we deduce, on the one hand,

ϕ̃I
1Z12Z13

(
ϕII

2 Z23ϕ
III
3

) = V̄ I II
12 ϕ

II
2 Z21ϕ̃

I
1R12Z13Z23ϕ

III
3

= V̄ I II
12 ϕ

II
2 Z21Z23ϕ̃

I
1Z13ϕ

III
3 R12
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= V̄ I II
12 ϕ

II
2 Z21Z23V̄

I III
13 ϕ

III
3 Z31ϕ̃

I
1R13R12

= V̄ I II
12 V̄ I III

13

(
ϕII

2 Z23ϕ
III
3

)
Z21Z31ϕ̃

I
1R13R12,

and on the other hand,

ϕ̃I
1Z12Z13

(
V III

23
IIϕIII

3 Z32ϕ
II
2 R23

)
= V III II

23 ϕ̃I
1Z13ϕ

III
3 Z12Z32ϕ

II
2 R23

= V III II
23 V̄ I III

13 ϕ
III
3 Z31ϕ̃

I
1R13Z12Z32ϕ

II
2 R23

= V III II
23 V̄ I III

13 ϕ
III
3 Z31Z32ϕ̃

I
1Z12ϕ

II
2 R13R23

= V III II
23 V̄ I III

13 ϕ
III
3 Z31Z32V̄

I
12

IIϕII
2 Z21ϕ̃

I
1R12R13R23

= V III II
23 V̄ I III

13 V̄ I II
12 ϕ

III
3 Z32ϕ

II
2 Z31Z21R23ϕ̃

I
1R13R12

= V̄ I II
12 V̄ I III

13

(
V III

23
IIϕIII

3 Z32ϕ
II
2 R23

)
Z21Z31ϕ̃

I
1R13R12.

The two results are equal by (3.6a). In the above calculations, we have used (2.5)
and QYBEs aboutV andV̄ obtained from (2.5). The consistency of the extension
to the high-order products and for the other braidings (3.7b)–(3.7d) can be verified
in entirely similar ways. Hence the braidings (3.7a)–(3.7d) are all well defined and
functorial with respect to the product.

Moreover, we extend1 in (3.1) to products in such a way that it is a homo-
morphism to the baided tensor product like (1.3). This is consistent because, for
example, for (3.6a) we have

1
(
ϕI

1Z12ϕ
II
2

) = (ϕI
1+ ϕ̃I

1

)
Z12
(
ϕII

2 + ϕ̃II
2

)
= ϕI

1Z12ϕ
II
2 + ϕI

1Z12ϕ̃
II
2 + ϕ̃I

1Z12ϕ
II
2 + ϕ̃I

1Z12ϕ̃
II
2

= ϕI
1Z12ϕ

II
2 + ϕI

1Z12ϕ̃
II
2 + V̄ I II

12 ϕ
II
2 Z21ϕ̃

I
1R12+ ϕ̃I

1Z12ϕ̃
II
2 ,

1
(
V II

12
IϕII

2 Z21ϕ
I
1R12

) = V II
12

I
(
ϕII

2 + ϕ̃II
2

)
Z21
(
ϕI

1+ ϕ̃I
1

)
R12

= V II
12

IϕII
2 Z21ϕ

I
1R12+ V II

12
IϕII

2 Z21ϕ̃
I
1R12

+V II
12

I ϕ̃II
2 Z21ϕ

I
1R12+ V II

12
I ϕ̃II

2 Z21ϕ̃
I
1R12

= V II
12

IϕII
2 Z21ϕ

I
1R12+ V II

12
IϕII

2 Z21ϕ̃
I
1R12

+V II
12

I V̄ II
21

IϕI
1Z12ϕ̃

II
2 R21R12+ V II

12
I ϕ̃II

2 Z21ϕ̃
I
1R12

= V II
12

IϕII
2 Z21ϕ

I
1R12+ V II

12
IϕII

2 Z21ϕ̃
I
1R12

+ϕI
1Z12ϕ̃

II
2 (1+ λP12R12)+ V II

12
I ϕ̃II

2 Z21ϕ̃
I
1R12,
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the two results are equal owing to (3.6a) and the relationV̄ I II
12 = V II

12
I + λP12PI II

obtained from (3.5a). In the above calculations we have also used
V I II

12 V I II
21 = E (unit matrix) and the Hecke property ofQ, R. So1 is well defined.

It is trivial to see that the braidings (3.7) (or equivalently (3.3)) are functorial with
respect to the coproduct1.

Finally, for a braided Hopf algebra, the antipodeS by definition is braided
antimultiplicative in the sense of (1.4). Then we can calculate, for example, for
(3.6a) and (3.7a), that

S
(
ϕI

1Z12ϕ
II
2

) = ·9(S(ϕI
1

)⊗ Z12S
(
ϕII

2

)) = V̄ I II
12 ϕ

II
2 Z21ϕ

I
1R12 = ϕI

1Z12ϕ
II
2 R21R12,

where the relation (3.6b) has been used; On the other hand,

S
(
V II

12
IϕII

2 Z21ϕ
I
1R12

) = ·9(V II
12

I S
(
ϕII

2

)⊗ Z21S
(
ϕI

1

)
R12
)

= V II
12

I V̄ II
21

IϕI
1Z12ϕ

II
2 R21R12 = ϕI

1Z12ϕ
II
2 R21R12.

So we haveS(ϕI
1Z12ϕ

II
2 ) = S(V II

12
IϕII

2 Z21ϕ
I
1R12). On the high-order products and

the other braidings, the calculations are similar. ThusS is well defined.
Other axioms such as·(S⊗ id)1= ·(id ⊗ S)1= ηε, etc., are easily verified.
Therefore, equipped with coproduct (3.1), counit, antipode (3.2), and one

of the braidings in (3.3), the differential algebraÄA(Q,R,Z) becomes a braided
Hopf algebra, this braided (additive) differential Hopf algebra will be denoted by
ÄA(Q,R,Z). ¤

4. SPECIAL CASES

The braided (additive) differential Hopf algebraÄA(Q,R,Z) given in Section 3
contains plenty of special cases, some of which are well known. These special
cases can be obtained fromÄA(Q,R,Z) by suitable choice of theR-matrix triple
(Q, R, Z). (In this sectionZ is also supposed to be invertible).

Example 4.1. TakingQ12 = Z12R21Z−1
21 , then from Proposition 2.1, theR-matrix

triple (Q, R, Z) is reduced to anR-matrix pair (R, Z) satisfying (2.1), and the
algebra relations (2.6) are reduced to (2.4). Correspondingly, theÄA(Q,R,Z) is
reduced toÄA(R,Z): a braided (additive) differential Hopf algebra based on the
ÄA(R,Z) given by (2.4). Explicitly,ÄA(R,Z) has the algebra relations (2.4), the
additive coproduct (3.1), the counit, antipode (3.2), and one of the following four
braidings obtained from (3.3) as
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T̃1Z12T2 = Z12R21Z−1
21 T2Z21T̃1R12,

T̃1Z12dT2 = Z12R21Z−1
21 dT2Z21T̃1R12+ λP12T2Z21dT̃1R12,

dT̃1Z12T2 = Z12R−1
12 Z−1

21 T2Z21dT̃1R12,

dT̃1Z12dT2 = −Z12R−1
12 Z−1

21 dT2Z21dT̃1R12; (4.1a)

T̃1Z12T2 = Z12R−1
12 Z−1

21 T2Z21T̃1R−1
12 ,

T̃1Z12dT2 = Z12R21Z−1
21 dT2Z21T̃1R−1

12 ,

dT̃1Z12T2 = Z12R−1
12 Z−1

21 T2Z21dT̃1R−1
12 − λP12dT2Z21T̃1R−1

12 ,

dT̃1Z12dT2 = −Z12R21Z−1
21 dT2Z21dT̃1R−1

12 ; (4.1b)

T̃1Z12T2 = Z12R21Z−1
21 T2Z21T̃1R12,

T̃1Z12dT2 = Z12R21Z−1
21 dT2Z21T̃1R12+ λZ12R21Z−1

21 T2Z21dT̃1P12,

dT̃1Z12T2 = Z12R21Z−1
21 T2Z21dT̃1R−1

21 ,

dT̃1Z12dT2 = −Z12R21Z−1
21 dT2Z21dT̃1R−1

21 ; (4.1c)

T̃1Z12T2 = Z12R−1
12 Z−1

21 T2Z21T̃1R−1
21 ,

T̃1Z12dT2 = Z12R−1
12 Z−1

21 dT2Z21T̃1R12,

dT̃1Z12T2 = Z12R−1
12 Z−1

21 T2Z21dT̃1R−1
21 − λZ12R−1

12 Z−1
21 dT2Z21T̃1P12,

dT̃1Z12dT2 = −Z12R−1
12 Z−1

21 dT2Z21dT̃1R12. (4.1d)

Example 4.2. Taking Q12 = R12 = Z12, then theR-matrix triple (Q, R, Z) is
reduced to a single matrix solutionR of the QYBE, and (2.6) is reduced to the
algebra relations of the differential complexÄB(R) on the braided matrix algebra
B(R) (Azcarragaet al., 1994, Kulish and Sasaki, 1993; Kulish and Sklyanin, 1992;
Majid, 1991, 1993; Ogievetskyet al., 1992):

R21T1R12T2 = T2R21T1R12,

R−1
12 T1R12dT2 = dT2R21T1R12,

R−1
12 dT1R12dT2 = −dT2R21dT1R12. (4.2)

Correspondingly, theÄA(Q,R,Z) is reduced toÄB(R): a braided (additive) differential
Hopf algebra onÄB(R). Concretely, theÄB(R) has the algebra relations (4.2), the
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additive coproduct (3.1), the counit, antipode (3.2) and one of the following four
braidings obtained from (3.3) as

T̃1R12T2 = R12T2R21T̃1R12,

T̃1R12dT2 = R12dT2R21T̃1R12+ λP12T2R21dT̃1R12,

dT̃1R12T2 = R−1
21 T2R21dT̃1R12,

dT̃1R12dT2 = −R−1
21 dT2R21dT̃1R12; (4.3a)

T̃1R12T2 = R−1
21 T2R21T̃1R−1

12 ,

T̃1R12dT2 = R12dT2R21T̃1R−1
12 ,

dT̃1R12T2 = R−1
21 T2R21dT̃1R−1

12 − λP12dT2R21T̃1R−1
12 ,

dT̃1R12dT2 = −R12dT2R21dT̃1R−1
12 ; (4.3b)

T̃1R12T2 = R12T2R21T̃1R12,

T̃1R12dT2 = R12dT2R21T̃1R12+ λR12T2R21dT̃1P12,

dT̃1R12T2 = R12T2R21dT̃1R−1
21 ,

dT̃1R12dT2 = −R12dT2R21dT̃1R−1
21 ; (4.3c)

T̃1R12T2 = R−1
21 T2R21T̃1R−1

21 ,

T̃1R12dT2 = R−1
21 dT2R21T̃1R12,

dT̃1R12T2 = R−1
21 T2R21dT̃1R−1

21 − λR−1
21 dT2R21T̃1P12,

dT̃1R12dT2 = −R−1
21 dT2R21dT̃1R12. (4.3d)

The aboveÄB(R) is, in fact, a “right-hand” version of the related result given
by Isaev and Vladimirov (1995) and Vladimirov (1994).

Example 4.3. Taking Q12 = R21, Z = 1, then (2.5) is reduced essentially to the
QYBE aboutR, and (2.6) is reduced to the algebra relations of the differential
complexÄA(R) on the quantum matrix algebraA(R) (Faddeevet al., 1989; Sudbery,
1992, 1993):

R12T1T2 = T2T1R12,

R−1
21 T1dT2 = dT2T1R12,

R−1
21 dT1dT2 = −dT2dT1R12. (4.4)

Correspondingly, theÄA(Q,R,Z) is reduced toÄA(R): a braided (additive) differential
Hopf algebra onÄA(R). Explicitly, theÄA(R) has the algebra relations (4.4), the
additive coproduct (3.1), the counit, antipode (3.2), and one of the following four
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braidings obtained from (3.3) as

T̃1T2 = R21T2 T̃1R12,

T̃1dT2 = R21dT2 T̃1R12+ λP12T2dT̃1R12,

dT̃1T2 = R−1
12 T2dT̃1R12,

dT̃1dT2 = −R−1
12 dT2dT̃1R12; (4.5a)

T̃1T2 = R−1
12 T2 T̃1R−1

12 ,

T̃1dT2 = R21dT2 T̃1R−1
12 ,

dT̃1T2 = R−1
12 T2dT̃1R−1

12 − λP12dT2 T̃1R−1
12 ,

dT̃1dT2 = −R21dT2dT̃1R−1
12 ; (4.5b)

T̃1T2 = R21T2 T̃1R12,

T̃1dT2 = R21dT2 T̃1R12+ λR21T2dT̃1P12,

dT̃1T2 = R21T2dT̃1R−1
21 ,

dT̃1dT2 = −R21dT2dT̃1R−1
21 ; (4.5c)

T̃1T2 = R−1
12 T2 T̃1R−1

21 ,

T̃1dT2 = R−1
12 dT2 T̃1R12,

dT̃1T2 = R−1
12 T2dT̃1R−1

21 − λR−1
12 dT2 T̃1P12,

dT̃1dT2 = −R−1
12 dT2dT̃1R12. (4.5d)

TheÄA(R) here is in reality a “right-hand” version of the corresponding result
given by Vladimirov (1994).

There are also other special cases ofÄA(Q,R,Z) such as braided (additive) dif-
ferential Hopf algebras on the quantum supermatrix algebras (Liao and Song, 1991;
Manin, 1989), on the quantum anyonic matrix algebras (Majid and Rodriguez-
Plaza, 1994), and on theµ-braidedGLq (Couture and Leivo, 1994), etc.; these
can all be obtained fromÄA(Q,R,Z) by choosing suitableR-matrix triple (Q, R, Z),
but here we have not discussed them in any detail.
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